
3 445b 0440028 0

I'his report has been reproduccd diirctly from the brst a i i l a b l e copy.

4vailahlc to DOE and DOE contractors from the Office of Scientific
ind Technical Information, 1'. 0. B o x 62, Oak Rid>c, TN 3 7x3 I ; priccs
~vailable froin (-13) 576-8-19 1, FTS 626-8.10 1 .

tvailable to thi: public f i o i l l the Nationul Techriic,il 1nforiri:ition
Service, U.S. 1)epartriiii;i of Coninicrce, 5285 Port R o y a l K o a d ,

spriilcfi;;!i!:.,V.V-22 I h I

This report vvC;ix prepxed as an account o f u.ork sponwrcrl by ;in ;3gcncy
of the United States Governiiicnt. Neither the Unitcd Stritcs
C;ovemment n o r ;my agency thereof. nor a n y o f thcir er71i;loyecs. rnakc:?
any wnrraniy, express or implied. or assumiii any l e g ~ l liabiliiy or
responsibility for the accuracy, completeness, or usefulness o f any
information, apparatus. product, or pocess disclosed, or rcprs.<cnis that
its IJYC v<ould not infiiiige privately owned rights. Referact . Ilcreiii ici

any specific coi-iimrici;ll piodtlct. process, or servicc by trade a x i i e ~
trac!emark, manufacturer, or oihrlx.b,ise, ~ (K S not necessarily consiituie 01

i rrr pl y its e ado rs e n r e n i, recommend :it i o n , o r favoring by the IJ n i t cd
State< Govcinnicnt or any agency thereof. 'Ihe views and opinions 01
authors cxpressed herein do noi aecessarlly state oi ieflcct thosc :>!'the
_____ I-Jnited States Governiiient of.my.:aeency Ihiienf.

ORN L /TM-13 2 54

Computer Science and Mathematics Division (4 os
Mathematical Sciences Section

PERFORMANCE MODELING FOR SPMD MESSAGEPASSING
PROGRAMS

Jiirgen Brehm t
Patrick H. Worley
Manish Madhukar *

t University of Hannover, Institut fur Rechnerstruk-
turen und Betriebssysteme, Lange Laube 3, 30159
Hannover, Germany
Oak Ridge National Laboratory, Mathematical Sci-
ences Section, P. 0. Box 2008, Oak Ridge, TN 37831-
6367

t Computer Science Department, Vanderbilt Univer-
sity, Box 1679, Station B, Nashville, TN 37235

Date Published: June, 1996

Research was supported by the Mathematical, Information and Compu-
tational Sciences Division of the Office of Computational and Technology
Research Program, Office of Energy Research, U.S. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Elidge, Tennessee 37831

managed by
Lockheed Martin Energy Research Corp.

for the
U S . DEPARTMENT OF ENERGY

under Contract No. DEAC05960R22464

3 445b 0440028 D

Contents

1 Introduction . 1
2 PerPreT . 3

2.1 Overview . 3
2.2 Application description . 4
2.3 System description . 6

3 IntelParagon . 8
4 PSTSWM . 9
5 ModelingPSTSWM . 12

5.1 Parameters . 12
5.2 Computation model . 14
5.3 Communication model . 17

6 Experiments . 18
6.1 Phase model validation . 19
6.2 Optimal aspect ratio . 22
6.3 Optimal parallel algorithm . 23
6.4 Runtime predictions . 24
6.5 Model accuracy requirements . 25

7 Conclusions . 27
8 Acknowledgements . 28
9 References . 28

... . 111 .

PERFORMANCE MODELING FOR SPMD M E S S A G E P A S S I N G

PROGRAMS

Jiirgen Brehm

Patrick H. Worley

Manish Madhukar

Abstract

Today’s massively parallel machines are typically message-passing systems consisting

of hundreds or thousands of processors. Implementing parallel applications efficiently in

this environment is a challenging task, and poor parallel design decisions can be expensive

to correct. Tools and techniques that allow the fast and accurate evaluation of differ-

ent parallelization strategies would significantly improve the productivity of application

developers and increase throughput on pardel architectures.

This paper investigates one of the major issues in building tools to compare paral-

lelization strategies: determining what type of performance models of the application code

and of the computer system are sufficient for a fast and accurate comparison of different

strategies. The paper is built around a case study employing the Performance Prediction

Tool (PerPreT) to predict performance of the Parallel Spectral Transform Shallow Water

Model code (PSTSWM) on the Intel Paragon.

PSTSWM is a parallel application code that was designed to evaluate different par-

d e l strategies for the spectral transform method as it is used in climate modeling and

weather forecasting. Multiple parallel algorithms and algorithm variants are embedded in

the code. PerPreT uses a relatively simple algebraic model to predict execution time for

SPMD (Single Program Multiple Data) parallel applications. Applications are modeled

through parameterized formulae for communication and computation, where the parame-

ters include the problem size, the number of processors used to execute the program, and

system characteristics (e+, setup times for communication, link bandwidth, and sustained

computing performance per processor).

In this paper we describe performance models that predict the performance of the

different algorithms in PSTSWM accurately enough to allow them to be compared, es-

tablishing the feasibility of such a demanding application of performance modeling. We

also discuss issues in generating and validating the performance models, emphasizing the

practical importance of tools such as PerPreT in such studies.

1. Introduction

Advances in microprocessor technology and interconnection networks have made it possible

to construct parallel systems with a large number of processors (e.g., Cray Research T3D,

IBM SP2, Intel Paragon, workstation networks running PVM). Unfortunately, the application

programs developed for conventional sequential systems or for pipelined supercomputers do not

automatically run efficiently on these systems. There are few tools to support the development

of parallel programs, and the performance of parallel programs is strongly dependent on the

parallel programming skills of the application developer.

Before writing a program, the developer must identify a parallelization strategy. In most

cases there are many options for distributing the data and tasks onto the processors. These

options often have widely varying performance characteristics that are functions of numerous

system and program parameters, and it can be difficult to predict a priori which options are

best. Accurate prediction of the performance trade-offs of alternative strategies and of how

the performance will change as program parameters change would greatly benefit program

developers.

As an example, several parallelization strategies have been proposed for global atmospheric

circulation models that use the spectral transform numerical technique [15]. These codes have

strict performance requirements, being used for weather forecasts or for long term climate

simulations, and even small improvements in performance can be significant. Researchers have

demonstrated empirically the performanceof one or two strategies [3], [7], [14], [18], [23], [26], or

have made qualitative or asymptotic comparisons between strategies using simple performance

models [5], [6], [13], but this work only establishes the feasibility of the different approaches.

To accurately compare the different strategies, researchers at Argonne National Laboratory

and Oak Ridge National Laboratory developed the Parallel Spectral Transform Shallow Wa-

ter Model (PSTSWM). Multiple parallel algorithms and algorithm variants are embedded in

PSTSWM, allowing good algorithms to be identified from empirical studies. The results of the

studies using PSTSWM have been extremely useful; however, PSTSWM took over two years

to develop and the experiments required to identify the best algorithms are time consuming.

We hope that performance models would be simpler to adapt to proposed changes in the ap-

plication codes and could be used to quickly examine the effect of running on new machines or

with different problem or machine parameters.

Several approaches for the modeling of parallel systems have been presented that use Markov

models or Petri nets [12], [21], [22]. Unfortunately, it is difficult to apply these approaches to

massively parallel systems:

- The graphical representation required by these approaches is very complex for systems

with hundreds or thousands of processors.

- 2 -

- The parallel application description required is very detailed.

- The resulting systems of equations defining the models are large and expensive to solve.

Applications for massively parallel systems typically use the single program multiple data

(SPMD) prograniming model and are loosely synchronous [a]. For such programs, simpler

modeling techniques utiIizing algebraic abstractions of the application and computer system

can often be used without a significant loss of accuracy [l]. These techniques make it feasible

to model architectures with thousands of processors and the resulting models can be evaluated

quickly.

Recent research utilizing algebraic performance models includes [4], [17], and [19]. These

papers focus on tools or methodologies, many of them language or system specific, that auto-

matically generate performance models from source code and user input. The paper by Sarukkai

et. al. [19] on a methodology and toolkit for the scalability analysis of message-passing parallel

programs has similarities with our research, but our concerns are somewhat different. We are

primarily interested in investigating the accuracy of algebraic performance models. We want to

identify what types of models can be used when modeling full application codes in the context

of comparing parallelization strategies. In earlier work we found that the different phases of a

parallel code place both implementation and Performance constraints on each other, and that

evaluation of kernels in isolation can be misleading, especially in a prototyping environment.

We feel that it is still an open question as to how to model full application codes. How complex

must a model be to be sufficiently accurate? How can a model be validated and the model

accuracy determined? How does the accuracy of a model “scale” with the number of processors,

problem size, and other program and system parameters? The comparison of parallelization

strategies is also an interesting application of modeling. It is a strict test in that it requires

multiple accurate models, but also requires only relative accuracy. The goal is “fairness” in the

models for the different strategies.

In this paper we show that a reasonably accurate prediction of performance measures is

possible without requiring detailed application and system characterizations. We describe a

case study employing algebraic models to predict the performance of the Parallel Spectral

Transform Shallow Water Model code (PSTSWM) on the Intel Paragon. We use these models

to determine which parallel algorithm options are optimal for a given problem size and number

of processors. We determine the error in our predictions empirically. We concentrate on

the feasibility of such an approach for comparing parallelization strategies We do not address

directly how to generate accurate models before the application code has been written, but the

results do provide guidance on how accurate the models need to be.

This research was possible only because of the prior existence of a number of tools: PSTSWM,

PICL, and PerPreT. PSTSWM is a convenient testbed for such studies. PICL (Portable Instru-

Application desc. PerPreT

Parameters:

- problem size

communication library Input
Input

PerPreT

Formulae for.
- communication
- computation

Analytieal model with parameters h+

System description

Parameters:
- setup time for send
- bandwidth mem->buf
- bandwidth links
- setup time for receive
- bandwidth buf->mem
- mp protocol
- network type
- sustained MFLDP/s

Figure 1: PerPreT Modules

mented Communication Library) was used to collect the performance data needed to construct

and to validate the performance models [9], [27]. PerPreT (Performance Prediction Tool) was

used to define and evaluate the performance models [l]. All three tools are available via the

World Wide Web from the following locations:

- PerPreT: http://uvw.irb.uni-hannover.def-brehm/publications

PICL: http://www.epm.ornl.gov/picl

PSTSWM: http: //urn. epm. o rn l . gov/chammp/pstsmm

The remainder of this paper is organized as follows. $2 is a description of how to use

the performance prediction tool PerPreT. $3 is a brief description of the Intel Paragon. $4
is a description of the PSTSWM code and of the different parallelization strategies. $5 is a

description of the parameterized PerPreT formulae for PSTSWM. 56 is a description of the

modeling experiments and an analysis of the results. $7 is a discussion of our conclusions and

some ideas for future work.

2. PerPreT

2.1. Overview

The high-level modules of PerPreT (Le., application description, system description, communi-

cation library, analytical model) are outlined in Fig. 1. PerPreT uses parameterized system and

application descriptions. Both the system and application descriptions are split into parameter-

ized communication and computation descriptions. The system and application descriptions are

kept independent of each other. Thus, applications are modeled on different systems without

the need of defining new application descriptions.

- 4 -

An SPMD application is reduced to formulae for computation (number of arithmetic state-

ments) and communication (calls to the communication library). The problem size for an

application and the number of processors used to execute the SPMD program are free parame-

ters. For modeling complex codes such as PSTSWM, PerPreT supports splitting the code into

different computation phases according to their performance behavior. If extra operations for

parallel computing are necessary (e.g., copy operations to prepare for communication), such

extra phases can also be modeled with their performance characteristics.

PerPreT uses the system description parameters in Fig. 1 and a communication library to

model the communication and computation behavior of the target architecture. The sustained

MFlop/s (millions of floating point operations per second) rates and the rates used for extra

phases (e-g., copy rates) are the only system variables that sometimes change with different

applications or with different phases of a single application. More details on PerPreT can be

found in [l] .

2.2. Application description

In many massively parallel systems, each processor has direct access only to its own local

memory. The communication between different processors is realized using message passing.

Even on parallel architectures that directly support a global address space, message passing

is a popular program.ming paradigm, both for portability and for efficiency. (Message passing

is often efficient because it is a convenient “discipline” for dealing with the nonuniform access

behavior inherent in any scalable memory system.)

Code for massively parallel systems is written primarily using the SPMD programming

model. In this model the same code is loaded on all execution units to perform the same or

similar tasks on different sets of data. Synchronization and communication for the tasks are

done at the user level. At the system level, each processor executes its own code. Because

of data dependencies, the various tasks of an SPMD program may have to communicate dur-

ing execution. When using hundreds or thousands of processors, the parallel codes must be

fairly regular and well structured to avoid load balancing problems and remain deadlock free.

Often, the codes have alternating phases of communication and computation or, at least, d i s

tinct phases containing both communication and computation that are separated by logical

synchronization points.

In Fig. 2, an example SPMD program is outlined as a task graph. The circles represent the

computational tasks and the arrows represent communication between tasks. A computation

phase does not Iast longer than TCP; time units (i=1,2,..,7) and a communication phase does

not last longer than TCMj time units (j=1,2,..,6). The assumption is that TCPi and TCMj are

the maximum times for all tasks at levels i and j , respectively. In Fig. 3, a possible mapping

- 5 -

Figure 2: SPMD Program Task Graph

Figure 3: Mapping of an SPMD program on 6 processors

- 6 -

of the tasks onto processors (Pl,..,P6) is shown. The estimated communication time of this

mapping is:

j

The estimated computation time is:

C T C P ;
i

The total estimated execution time is:

If there is tight synchronization between phases, the measured execution time will be very

close to these estimates. However, many SPMD codes are only loosely synchronous, where

synchronization between phases is enforced only by the natural data dependencies and by the

explicit message passing used to satisfy these dependencies. For these codes, not all processors

necessarily execute the same phase at the same time. If load imbalances at each phase are not

all assigned to the same processors, then the use of maximum phase costs cause an overestimate

of the total execution time. Such behavior can also be modeled in PerPreT, at the cost of more

complexity in the models. In our experience and in the experiments described in this paper,

the simple maximum phase cost model is sufficiently accurate, and is used exclusively in this

paper.

For more general task graphs the number of subtasks per level, and thus the number of

arrows per level, is not necessarily constant. Data parallelism often results in one subtask

per processor for some of the levels, and the number of processors is a natural parameter

in the communication and computation models. The problem size is the second parameter

used. Clearly, the times TCP; (determined by the number of statements to be executed) and

TCMj (determined by the message length) depend on these parameters, but the formulae for

communication (1) and computation (2) are valid independent of the number of processors and

the problem size.

2.3. System description

Communication. In most existing message-passing systems, the time required for each

point-tepoint communication request can be divided into the five phases outlined in Fig. 4.

Depending on the message-passing protocol, one or more of the phases may or may not exist. For

instance, transputers use synchronous message passing where the messages are copied directly

from the user space on one processor to the user space on another processor. In this case it

- 7 -

Processor 1

Processor2

T1: Send setup time. This time is needed for communication between the sender’s commu-
nication unit and the sender’s user process to initialize message buffers and to transfer
control of the transmission to the communication unit.

T2: Send copy time. In the case of an asynchronous message-passing protocol, the outgoing
message is often copied to a buffer controlled by the communication unit.

T3: Message transmission time. This time is required to copy the message from the sender’s
communication unit to the receiver’s communication unit.

T4: Receive setup time. This time is needed for communication between the receiver’s user
process and the receiver’s communication unit. The receiver’s user process is informed
about the location of the message.

T5: Receive copy time. In the case of an asynchronous messagepassing protocol, the incom-
ing message is often copied from a buffer controlled by the communication unit to the
receiver’s process space.

Figure 4: Message-Passing Communication

- 8 -

is not necessary to copy the messages from user space to the communication buffer and vice

versa. The PerPreT approach is general enough to model a wide variety of existing message-

passing protocols. The time for communication in a message-passing system normally follows

the simple formula: Tc = Tl+T2+T3+T4+T5 where Tc is the communication time. Some

of the phases (e.g., T2, T3, T5) depend on the message size. If a complete system specification

is available, these times can be used by the PerPreT communication library routines directly.

However, users often do not have access to a detailed specification. The vendor provided times

tend to be “optimistic”, reporting best case times. These reported times may also be invalid

if third party or other nonnative communication routines are used. For instance, if a program

uses a portable communication library such as MPICH [lo] or PICL [9], the times are slightly

higher because of the overhead of an additional software layer. The PICL message-passing calls

were used for this work, and the times Tl,..,T5 were determined by experimentation [20]. These

times are used as input parameters for the routines of the PerPreT communication library.

Computation. The computational behavior measured in MFlop/s of a single processor in

a multiprocessor often shows a wide variation for different programs. Thus the performance

of the processor for the given program has to be determined in order to predict the execution

time of a program accurately. When the sequential or parallel code is available, PerPreT users

preferably run the code on one or a small number of processors and calculate the sustained

MFlop/s rate. If the code for an application is not available the PerPreT user has several

choices:

0 look at similar codes and take their performance characteristics;

0 implement a small kernel to simulate the code;

e look at beiichmarks that characterize the performance of the underlying hardware and

system software.

In the case of PSTSWM the code was split into several compute and copy phases. The

performance rate for each of these phases was determined from a set of runs of the program

on eight processors, as described in 55.2. The assumption is that these values will prove to be

accurate enough for experiments when more than eight processors are used. The validity of

this assumption is examined in $6.

3. Intel Paragon

The Paragon XP/S M P system is a distributed memory multiprocessor in which the de^''

are connected via a two-dimensional mesh interconnection network. Each node in the mesh

- 9 -

consists of three processors, two of which are dedicated to computation while the third is

normally dedicated to communication. The communication processor is responsible for handling

the messages generated by the node and the messages passing through the node. Processors

and memory in a node are interconnected by a 400 MB/sec bus, and each link in the node

interconnection network has a peak unidirectional bandwidth of 200 MB/sec.

There are three types of nodes - service, compute, and I/O. The service nodes host appli-

cation control processes, compute nodes are assigned to parallel applications and dedicated to

computations, and the 1/0 nodes provide the interface between the machine and RAID disks.

The node interconnection network uses wormhole routing. The messages travel in the horizon-

tal direction first and then in the vertical direction. Due to wormhole routing, communication

latency is effectively distance independent.

The XP/S 150 MP at Oak Ridge National Laboratory consists of 1024 compute nodes in

a 16 row by 64 column rectangular mesh. Each processor is a 50MHz i86OXP, and all of the

nodes have at least 64MB of “local” memory. In addition, there are 5 service nodes and 127

1/0 nodes, each connected to a 4.8 GB RAID disk. At the time of these experiments, the

system software was release 1.3 of OSF.

In our experiments, of the three processors in a compute node, one was used for computation,

one was used for communication, and one was left idle. Using the second computation processor

did not improve performance for PSTSWM due to the nature of the memory accesses. For the

rest of the paper we will refer to a node in the XP/S 150 as a processor.

4. P§TSWM

PSTSWM is a message-passing parallel program that solves the nonlinear shallow water equa-

tions on a rotating sphere using the spectral transform method. PSTSWM is written in For-

tran 7’9 with VMS extensions and a small number of C preprocessor directives. Message passing

is implemented using MPI [16], PICL [9], PVM [$I, or native messagepassing libraries, with

the choice being made at compile time. Optional performance instrumentation is implemented

using the PICL trace and profile collection interface. PICL was used in the work described

here, to collect performance data, but PICL simply represents a thin layer over the native NX

message passing on the Intel Paragon.

The shallow water equations in the form solved by the spectral transform method describe

the time evolution of three state variables: vorticity, divergence, and a perturbation from an

average geopotential. The velocities are computed from these variables. PSTSWM advances

the solution fields in a sequence of timesteps. During each timestep, the state variables of the

problem are transformed between the physical domain, where the physical forces are calculated,

and the spectral domain, where the terms of the differential equation are evaluated. The

- 10-

1) Evaluate non-linear product and forcing terms.

2) Compute forward Fourier transform of non-linear terms.

3) Compute forward Legendre transforms.

4) Advance in time the spectral coefficients for the state variables.

5) Evaluate sums of spectral harmonics, simultaneously calculating the horizontal ve-

6) Compute inverse Fourier transform of state variables and velocities.

locities from the updated state variables.

Figure 5: Outline of a single timestep of PSTSWM.

physical domain for a given vertical level is a tensor product longitude-latitude grid. The

spectral domain for a given vertical level is the set of spectral coefficients in a truncated spherical

harmonic expansion of the state variables.

Transforming from physical coordinates to spectral coordinates involves performing a real

fast Fourier transform (FFT) for each line of constant latitude, followed by integration over

latitude using Gaussian quadrature (approximating the Legendre transform (LT)) to obtain the

spectral coefficients. The inverse transformation involves evaluating sums of spectral harmonics

and inverse real FFTs. The basic outline of each timestep is described in Fig. 5. For more details

on the steps in solving the shallow water equations using the spectral transform algorithm

see [ll].

The parallel algorithms in PSTSWM are based on decompositions of the physical and spec-

tral computational domains over a logical two-dimensional processor mesh of size PX x PY.

Initially, the longitude dimension of the physical domain is decomposed over the processor

mesh row dimension and the latitude dimension is decomposed over the column dimension.

Thus, FFTs in different processor rows are independent, and each row of PX processors col-

laborates in computing a “block” of E’FTs. Similarly, the Legendre transforms in different

processor columns are independent, and each column of PY processors collaborates in com-

puting a “block” of Legendre transforms. The computation of the nonlinear terms at a given

location on the physical grid is independent of that at other locations. The spectral domain

decomposition is a function of the parallel algorithm used. In this version of PSTSWM, all

computations on the spectral “grid” are likewise independent. Parallel efficiency is determined

solely by the efficiency of the parallel algorithms used for the FFT and LT transforms and by

any load imbalances caused by the choice of domain decomposition.

Two classes of parallel algorithms are available for each transform: distributed algorithms,

using a fixed data decomposition and computing results where they are assigned, and trans-

pose algorithms, remapping the domains to allow the transforms to be calculated sequentially.

These represent four classes of parallel algorithms: distributed FFT/distributed LT, transpose

- 11 -

DH:
D R
DT:

FFT/distributed LT, distributed FFT/transpose LT, and transpose FFT/transpose LT.

PSTSWM provides many parallel algorithms for each of the parallel algorithm classes [%I.
In these experiments, we restrict ourselves to one transpose algorithm (for both FFT and LT),

one distributed FFT algorithm, and two distributed LT algorithms, comprising the best parallel

algorithms on the Intel Paragon. These algorithms are briefly described below.

distributed FFT / @(log 9)-step distributed LT
distributed FFT / O(Q)-step distributed LT

distributed FFT / transpose LT

Transpose. Assume that the transpose algorithm involves Q processors and that each

processor contains D data to be transposed. Then every processor sends approximately

D/Q data to every other processor, for a total of O(Q) messages and a total per processor

volume of 8 (D) .

TH:
TR:
TT:

Distributed FFT. Assume that the distributed FFT algorithm involves Q processors

and that each processor contains D data to be transfomed. Then each processor exchanges

0 / 2 data with its neighbors in a logical (log, 9)-dimensional hypercube, for a total of

0(log &) messages and a total per processor volume of O (D log Q).

transpose FFT / 0(log Q)-step-distributed LT
transpose FFT / @(&)-step distributed LT

transpose FFT / transpose LT
-

Distributed LT. Assume that the Legendre transform is parallelized over & processors

and that each processor will contain D spectral coefficients when the transform is com-

plete. Then the per processor communication costs for the two distributed LT algorithms

can be characterized by

-

- S(Q) messages, O(DQ) total volume

- @(logQ) messages, O(DQ) total volume

respectively. The O(Q)-step algorithm works on a logical ring, each processor communi-

cating only with its two neighbors. The @(log&)-step algorithm uses the same commu-

nication pattern as the distributed FFT algorithm.

These parallel algorithms for the FFT and LT generate the six parallel algorithms for the

spectral transform method listed in Tab. 1. There are many implementation variants possible for

Table 1: Candidate PSTSWM parallel algorithms

each of these algorithms, distinguished, for example, by the choice of communication protocol

- 1 2 -

and the mapping of logical processors to physical processors. For these experiments, we use

those implementations that have proven most efficient on the Intel Paragon. For details on the

different implementation options, see [as].
PSTSWM is an interesting case study in modeling for many reasons. It has numerous dis-

tinct phases, each with its own computation and communication rates and patterns. It has

(static) load imbalances that change with the choice of parallel algorithm and logical proces-

sor mesh. It requires significant global communication during each timestep, divided into two

collective operations that access the processors in different ways. Finally, PSTSWM is a r e p

resentative member of an important class of simulation models. In these studies, our goal is to

build models that are accurate enough to indicate which parallel algorithm is most efficient for

a given problem size and number of processors on a given multiprocessor.

5 . Modeling PSTSWM

Assume that communication costs are negligible or scale linearly with the computation costs.

Assume further that the computation rate varies in the same way across all algorithms as a

function of the number of processors and of the problem size. Then a simple computational

complexity analysis is sufficient to choose between the alternative parallel algorithms. If these

assumptions do not hold or if runtime estimates are also needed, then we must determine both

the computation and communication costs for a range of numbers of processors and of problem

sizes.

In earlier research, we showed that different logical phases of a code may need to be modeled

individually [25]. Each phase has its own Computation rate, depending on the amount of

computation and the amount and pattern of memory accesses. As the number of processors

and problem size change, the percentage of time spent in each phase changes. This changes

the overall computation rate. In the following, we identify and construct models for important

phases. For brevity, we present only the phase models for algorithm TH. Models for the other

parallel algorithms are given in Tab. 1417 in the appendix.

5.1. Parameters

PerPreT expects one formula for the computation and one formula for the communication

as input. These formulae use the number of processors and the problem size as parameters.

For PSTSWM, the problem is specifed by 8 parameters: DT, TALE, HM, NN, KK, E A T , "LON,

WER, and by the specification of initial data and forcing function. The data and forcing

function specification is fixed in these experiments and the following performance models are

- 13 -

specific to the particular test case1, representing the calculation of solid body rotation steady

state flow [24]. DT is the length of the timestep and TAUE is the duration of the model run

in simulated time. Thus, TAUE/DT is the number of timesteps in the simulation. For these

experiments the number of timesteps is fixed at 108. MM, NN, and KK determine which spectral

coefficients are generated. We use the common choice of MM = NN = KK, which implies that

MH + 1 Fourier coefficients are retained from the Fourier transform and (MM + 1)(HM + 2)/2

spectral coefficients are used in the spectral representation. NLAT, NLON, and MER define the

tensor-product physical grid of size NLON x NLAT x WVER. These values are also a function

of when the computational complexity is minimized subject to satisfying an anti-aliasing

condition. The number of processors used is specified by the logical processor mesh PX x PY.

The costs associated with each phase of PSTSWM are functions of the domain decomposi-

tion relevant to the phase. There are two decompositions of the physical domain (longitude x

latitude x vertical levels) :

NLLONJ, NLLATS, and NLVERJ, denoting the number of local longitudes, latitudes, and

vertical levels assigned to a given processor during physical domain computations,

N U O N E , NLLAT-F, and NLVERE, denoting the number of local longitudes, latitudes, and

vertical levels assigned to a given processor during the Fourier transform phases,

one decomposition of the Fourier domain (wavenumber x latitude x vertical levels):

e NLMMS, NLLATS, and NLVHLS, denoting the number of local wavenumbers, latitudes, and

vertical levels assigned to a given processor during the Legendre transform phases,

and one decomposition of the spectral domain (spectral coefficients x vertical levels):

N L S P S , NCSPS, and NLVI%S, denoting the number of spectral coefficients assigned to a

single processor and to a single column of processors, respectively, during computations

in the spectral domain.

The values for these 11 parameters are functions of NPI, NN, KK, NLAT, NLON, NVER, PX, PY, and

the parallel algorithm being used. The values for parallel algorithm TH are as follows:

'Most of the other test cases differ only in calculation of the nonlinear terms, and only one phase model
would need to be changed when changing cases.

- 14 -

The values for the other 5 algorithms are listed in Tab. 13 in the appendix. These are maximum

values across all processes, and load imbalance enters via the floor and ceiling functions in the

expressions. The load imbalance varies with logical grid aspect ratio and parallel algorithm,

and between the different computational domains.

5.2. Computa t ion model

PerPreT requires a simple algebraic expression for the number of arithmetic statements exe-

cuted by each processor. If this number varies for different processors, the maximum is used.

To implement different models for different phases, a separate algebraic expression is generated

for each phase. The computation model for the entire program is a weighted sum of the phase

expressions, where the weights are the computation rates associated with the different phases.

We include phases that involve only copying. In parallel codes, copying is often a significant

cost, For example, for the transpose-based parallel algorithms the indices of the field arrays

must be in a different order for the transposition than for the computation. This requires an

explicit copy before and after the communication phases.

The following phase computation models for parallel algorithm TH were derived from the

source code and are of two types: number of floating point computations and number of bytes

copied. For the purposes of these experiments, we limited ourselves to (simple) models that an

industrious application developer would be willing to generate. Some phases are interleaved in

time even for a single timestep, and a given phase model represents the sum of all calls to the

relevant code during one time step. Later we will examine whether this number of phases i s

necessary or sufficient.

The phase models come in two forms: one-parameter (single rate) and two-parameter mod-

els. All of the phases show some performance sensitivity to problem size and aspect ratio, but

many of the computational phases are relatively insensitive and a single rate is sufficient. (We

examine accuracy issues in detail in $6.) The variations in the rates in Tab. 2 between different

phases arise from different access patterns to and from memory, and from differing amounts of

computation per memory access.

In contrast, rates for phases with low computation to memory access ratios, like COPY phases,

vary significantly with aspect ratio and problem size. With a few exceptions, this variation is

approximated reasonably well with the following two-parameter model: a rate for the total

number of operations and a rate for the number of times that the inner loop is executed. The

form of these models was derived empirically, but one justification is that it takes into account

the additional cost of crossing cache and page boundaries when accessing memory.

The phases requiring two-parameter models and the rates for all models were determined

empirically. Timings were taken from a series of 8-processor runs using two different problem

- 15 -

Phase I Model Rate

1 I 12 . NLLONS . NLLATY * N L V E R S 4.8

2
3
5
6
7

9
10
11

[(PX - l)/PX1 . 3 2 . NLLATY . NLK3RS . (a + b a NLLONS)
[(PX - l)/PX] .32 . N L L A T S . NLVERT . (a. PX + b . NLLONI)
20 . NLLATT . NLVERE . NLLI.INT . (a + b . log2(NLLON-F/4))
64 . NLLATI: . NLVERT . (a + b . NLLON-F/4)
144. NLLATT . NLVERE . (a + b . NLLONE/4)

forward LT
(PY - 1) * 6 . NLVERS . NCSPS/PY
61 . NLVERS . N W S . NLLATS
(14 . NLLATS - 1) . NCSPS . NLVERS

(4.5,23.1)
(17.7,21.6)
(3.8,24.0)
(4.0 15.2)
(10.4,19.8)

4.4
10.0
15.1

12 I 13 .NLSCS * NLVERS 11.5

13 17 - NCSPS N L V E R S
14
17

18
19
20
21
22 [(PX- l)/PX] . 2 0 . N L L A T F . ~ O N S . (a - P X + b . M L V E R S)

(14 . NCSPS + 10 . N L M H S) . NLLATS . N L V E R S
40 . NLLATI . NLVERE . (a + b . (NLLONE/2 - NLHMS)

70 . MLLATI . N L V E R E . (a + b . NLLOI?_F/4)
40 . NLLATI NLVERE . (a + b . M L D N E / 2)
(25/2) NLLATJ . NLVEFtE . NLLON-F (a $- b . logz(NLLON_F/4))

inverse FFT

r(Px - i)/Px] .20 . NLLATE . EVERT. KLOBIE

7.0
12.8

(22.1,36.8)

(8.8 20.4)
(2.8,18.6)
(3.8 24.0)

10.2
(15.2,18.6)

- 1 6 -

2
3
4
5
6
7

8
9

10
11

copy before transpose or copy before distributed computation
copy in transpose
distributed computation
sequential forward FFT
copy before communication for complex-to-real extraction
extract the real transform from the complex transform

forward LT
copy before transpose
copy inside transpose or summation inside distributed vector sum
forward LT preprocessing
forward LT computation

13
14
15
16
17

18
19
20
21
22
23

inverse LT preprocessing
inverse LT computation
copy before transpose
copy inside transpose
zero truncated coefficients

inverse FFT
convert real transform data into complex transform data
copy after conversion
sequential inverse FFT
copy before transpose or copy before distributed computation
copy inside transpose
distributed computation

- 17-

sizes, 32 bit precision, and all possible aspect ratios (1x8, 2x4, 4x2, 8x1). For one-parameter

models we use the maximum observed rates. This avoids contamination from atypical rates

arising from inefficient memory alignments or poor cache performance. For the two-parameter

models we use typical or median values, giving preference to rates for the smaller problem

when there is a significant discrepancy. The intent is to better capture the behavior when

extrapolating to larger numbers of processors. If a rate for a phase showed variation but

could not be accurately fit with the type of two-parameter models described above, we use a

one-parameter model.

Interactions with the memory hierarchy are major determiners of computation and copy

rates, and these change in a phase as the problem and algorithm parameters vary. Even one-

parameter phase models that are highly accurate for the &processor calibration runs will be

valid only for a range of problem and machine parameters. Consequently, there will be errors in

the rates when extrapolating, and scalability will be a problem even in a phase model approach.

Algebraic models that take into account memory access patterns are possible, but such models

are unlikely to be developed by an application programmer and are not discussed here. Our

hope is that the range of validity of the rates is large enough or that the degradation affects all

phases in a similar enough way that the algorithm comparisons will be reasonably accurate.

5.3. Communication model

PerPreT requires a high-level description of the communication in a parallel program. For

PSTSWM, communication models are required for the two parallel FFT and for the three

parallel LT algorithms. The detailed models are given in Tab. 4. The comm(messlength)

function in Tab. 4 returns the time needed for one communication between two processors of

the multiprocessor. The parameter messlength is the message length in bytes. Contention

for bandwidth and other network resources and distance in the network are ignored in these

experiments. The models are parameterized solely by the number of messages and by the size

of each message for a given processor.

Note that the nature of the communication varies significantly between the different algo-

rithms. The distributed FFT and @(log Q)-step distributed LT use a butterfly pattern in their

communication. In the transpose algorithm, each processor sends to every other processor,

using an exclusive-OR ordering to avoid some contention. In the @(&)-step distributed LT,

each processor sends and receives from only two other processors, and the two processors are

chosen to be neighbors in the physical network if possible. The O(Q)-step distributed LT also

attempts to overlap the communication with computation. None of these differences are taken

into account in these models, although they could be, and this work also examines whether

more detailed models are needed. More detailed models of the communication cost are known

- 18 -

forward
inverse

forward
inverse

[(PX - I)/PX] 1 (1 + logg,(PX)) . comm(32. NLLATS -NLVEFl_P . [NLLON9/21)
[(PX - 1)/PX] . (1 + log,(PX)) . comm(20. NLLAT-P -NLVERS . [NLLON-P/21)

(PX - 1) . comm (32 . NLLATS . NLVERT . NLLONS)
(PX - 1) . corn (20 . NLLATS . NLVEXF . NLLON-P)

Transpose FFT

to be necessary if poor communication algorithms or protocols are used. For example, a trans-

pose algorithm in which all processors send to processor 0, then processor 1, etc., serializes the

communication, and the maximum per processor number of messages and message volume will

not represent the communication cost. The goal of the algorithm comparison is to compare

good parallel implementations, and we hope that more detailed communication models are not

necessary.

forward
inverse

forward

inverse

forward
inverse

6. Experiments

(PY - 1) . corn (24 . NLVERS . NLSPS)
(PY - 1) comm (24 . NLVERS . NLSPS)
log, PY

@(log Q)-step distributed LT

2 . corn (8 . 13 . NLVERS . NCSPS/Zi1)
i = l
-

(PY - 1) . comm (64 . NLLATI . NLVERS . NLMMS)
(PY - 1) . comm (40 . NLLATI . NLVERS . NLMMS)

Transpose LT

The performance models described in the previous section and in the appendix are meant to

be simple enough to be generated by the application developer, yet accurate enough to be

used when scaling problem and machine parameters and when comparing alternative parallel

algorithms. The approach taken here has been to construct the application model from a set

of phase models.

In this section we begin by examining the accuracy of the individual phase models. We then

use the models to investigate the following performance questions:

1) What is the best logical aspect ratio to use for a given parallel algorithm and for a given

number of processors?

2) What is the best parallel algorithm to use for a given number of processors?

3) How long will the application take to complete a run?

- 19-

Two problem sizes are investigated, denoted by T42 and T85,

MM NRI KK NLAT NLON NVER -il
We discuss the phase model validation for algorithm TH and for three numbers of processors,

P = 8,64,128. For the three performance questions, we discuss P = 8,16,32,64,128,256,512.

The optimal logical aspect ratio is determined for each parallel algorithm. The optimal parallel

algorithms are determined over all algorithms and aspect ratios. The estimation of runtimes is

discussed in terms of the optimal parallel algorithms.

Finally, we reexamine the models, evaluating the effectiveness and importance of the phase

model approach in being able to answer the stated performance questions.

6.1. Phase model validation

The rates for the phase models were determined from data for 8-processor experiments, as

described exlier. Table 5 indicates the maximum error in using these simple one- or two-

parameter models for a given phase over all possible aspect ratios, where the percentage absolute

error is defined by

100 - Ipredicted-time - trueAimel/true-time . (4)

Observations on the accuracy of the phase models follow.

1) The maximum errors for the 8-processor runs used to determine the rates are small for

the most part. There are some phases for which the simple one- and two-parameter

models are not very accurate. These same phases also show poor accuracy for the 6 4

and 128-processor runs.

2) Many of the models are not very accurate when scaling to 64 and 128 processors in the

worst case. What is not shown in this table is the range of validity across aspect ratio.

Most of the models are quite accurate for all but the extreme aspect ratios. The depen-

dence of the accuracy on aspect ratio can be inferred from Tab. 6 , where the percentage

error in the models is given for each aspect ratio in turn. The percentage error is defined

to be

100 . (predicted-time - true-time)/true-time . (5)

Note that 256-processor results are included in Tab. 6 to provide additional information

on the scalability of the models. Results for P = 16,32,512 are omitted because of space

limitations.

- 20 -

P = 128
35.3
6.2
15.0
4.0
42.7
32.4
15.1
41.3
21.8
2.4
2.5
8.9
63.9
30.4
37.5
8.5
18.0
9.4
8.5

36.0
44.9

Phase
1
2
4
5
6
7
9
10
11
12
13
14
17
18
19
20
21
23

sum 1-23
FFT comm
LT comm

P = 8
19.4
4.3
0.8
1.0
4.1
2.5
2.1
10.9
9.6
3.5
0.7
7.1
8.4
3.0
2.4
1.7
15.1
3.8
2.3
13.5
23.4

P = 8
24.2
0.3
0.2
0.3
3.5
2.4
11.7
16.4
9.5
0.9
4.0
6.1
14.8
1.1
6.8
5.4
1.2
3.3
3.3
40.8
3.2

maximum percentage absolute error
T42

P = 64
53.4
5.3
12.0
11.6
43.5
32.1
11.3
42.8
25.5
1.4
2.4
9.1

60.9
27.6
38.2
8.9
11.1
5.2
6.1
16.0
45.3

T85
P = 64

53.7
5.0
11.2
3.6

43.7
31.7
2.2

45.4
23.3
3.8
1.7

13.7
36.7
28.9
38.3
8.2
7.0
4.7
10.6
13.3
31.3

P = 128
54.6
4.4
11.7
3.7

43.5
31.8
3.8
45.7
22.2
3.6
2.2
12.9
63.9
28.8
37.8
8.8
6.5
4.7
9.5
29.0
53.1

Table 5: Maximum percentage absolute error in phase models over all aspect ratios for algorithm
TH .

- 21 -

Aspect Ratio
PX x PY

8x1
4x2
2x4
1x8

64x1
32x2
16x4
8x8

4x16
2x32
1x64

128x1
64x2
32x4
16x8
8x16
4x32

7
Runtime
(seconds)

92.08
90.84
90.67
83.61
44.07
22.98
12.46
12.80
13.81
16.75

46.91
23.43
12.55
7.12
7.42
8.97

-

2x64
256x1
128x2
64x4
32x8

16x16
8x32
4x64

2x128
1x256

T85
Runtime
(seconds)

481.83
477.54
481.30
429.89
226.37
113.80
60.2 1
61.38
66.18
76.71
95.23
227.18
112.33
58.31
31.84
34.20
39.92

-
25.83
13.44
7.54
4.50
5.18
-
-
-

% error
in model

-4.3
-3.5
-3.2
1.5
-0.9
1.2
1.2
1.5
0.6
-1.0
-5.7
-0.7
1.8
1.8
0.5
-1.1
-3.7

2
% error

in model
-4.4
-3.5
-2.0
-2.8
0.6
-0.6
-1.7
-3.3
-3.1
-6.2

-0.8
0.2
-2.3
-5.4
-5.5
-9.9

-

-
-
-1.1
-2.8
-7.5
-11.4
-16.3
-
-
-

51.89
240.45
116.85
59.67
32.51
19.19
2 1-90
28.77
-
-

-10.4
-15.2

Table 6: Runtime and model error for algorithm TH.

- 22 -

3) In general, the most inaccurate phase models are for those phases taking the least amount

of time. This is to be expected given the greater degree of sensitivity to overhead and

unpredictable memory access costs in short phases. This result is not directly observable

from Tab. 5, but it can be inferred from the relatively good accuracy shown in the sum of

the phase computation models (“sum 1-23”) and in the total time predictions in Tab. 6 .

4) Communication costs are not simple to separate from computation costs. The arrival

of messages while a process is in a computation phase causes an overestimate of the

computation cost and an underestimate of the communication cost. For completeness, we

have included what data we have on communication costs and estimated the error in the

models, but the accuracy of the communication models is best inferred from the accuracy

of the total time predictions in Tab. 6.

5) While algorithm TI1 is not atypical, the accuracy of the models for the other algorithms

varies from that shown here. The appendix contains results corrresponding to Tab. 6 for

the other algorithms.

In summary, the individual phases are not always well modeled by using these simple per-

formance models, but the phase model approach appears to be quite accurate when modeling

the entire application.

6.2. Optimal aspect ratio

The first performance question of interest for PSTSWM is how to allocate processors among the

different parallel transforms to minimize execution time, i.e., for a given number of processors,

what logical aspect ratio should be used. The relative accuracy of the execution time predictions

is important here, not the absolute accuracy. Table 7 describes the true and predicted optimum

for different numbers of processors when they differ, and the percentage loss from using the

model results. The loss is measured in the following way. Let PRED represent the predicted

optimal aspect ratio. Let OPT represent the true optimal aspect ratio. The percentage loss is

defined as

100 . (PREDfrueAirne - (3PTdrzle_tinze)/(OPT_trzle_time) . (6)

Only 17 of the 84 model predictions are incorrect, and only 4 of these result in errors in

runtime of more than 5%. Performance on the Paragon is very consistent, but there is some

small variation between runs. The 7 cases in which the “error” is less than 1% should probably

be considered correct

What is not indicated in this table i s how important it is to choose a good aspect ratio.

The worst case aspect ratios are as much as ten times worse than the best case, primarily

- 23 -

Processors
DH (3 errors)

32
512

32
512

DR (2 errors)

T42 T85
model experimental ?6 error in model experimental % error in
results results runtime results results runtime

I 4x8 2x16 0.5 4x8 4x8
16x32 32x16 8.5 16x32 32x16 0.2

1x32 4x8 1.2 1x32 1x32
16x32 32x16 16.8 32x16 32x16 -

-

~~

Table 7: Error in choosing optimal aspect ratio from model results instead of experimentally.

32 11 16x2 I 8x4

reflecting load imbalance. Tables 18-23 in the appendix contain more details on the sensitivity

of performance to aspect ratio.

Determining a good logical aspect ratio is important when implementing a parallel strategy.

A parallel code could incorporate the flexibility to change at least some of these parameters

at compile-time or runtime, in which case PerPreT simply makes this more convenient to

determine. This convenience should not be underestimated. Determining the optimal aspect

ratio experimentally requires access to the same number of processors as will be used in a

production run and numerous, possibly expensive, experiments.

0.2 11 8x4 I 16x2 I 0.3

6.3. Optimal parallel algorithm

Determining the optimal parallel algorithm experimentally requires developing, tuning, and

evaluating multiple parallel implementations. This is much more time consuming than deter-

mining the optimal aspect ratio experimentally, and there is much to be gained from using

performance models to predict the optimal parallel algorithm. As before, relative accuracy in

the predicted execution times is what is important. Table 8 indicates the true and predicted

optimal parallel algorithm for different numbers of processors, and the percentage loss from

using the model-identified algorithm, measured as in (6) . The optimal aspect ratio was found

for each parallel algorithm before being compared with the other parallel algorithms. The

16 1x16 4x4
32 16x2 8x4
64 16x4 16x4

16 16x1 16x1
32 1x32 4x8
64 16x4 8x8

128 16x8 8x16

TT (6 errors)

- 5.4 1x16 1x16
2.3 8x4 4x8 0.2
- 16x4 8x8 0.3

- 16x1 1x16 5.6
4.4 1x32 1x32 -
2.6 16x4 8x8 3.4
0.9 16x8 8x16 2.5

- 24 -

experimental
optimum
DR 1x8
DR 1x16
TR 4x8
TR 8x8
TT 8x16
TT 16x16
TT 16x32

Processors
8

16
32
64

128
256
512

% diff. in
runtime

6.2
1.8
1.5
0.3
2.5
-
I

T42
model 1 experimental

optimum optimum A
T R 8x4 TR 8x4

% diff. in
runtime

model
optimum
DT 1x8
DT 1x16
TR 16x2
TR 16x4
TT 16x8
TT 16x16
TT 16x32

Table 8: Error in choosing optimal algorithm from model results instead of experimentally.

model results use the model-determined optimal aspect ratios. The empirical results use the

experimentally-determined optimal aspect ratios.

The performance models correctly identify the optimal algorithm and aspect ratio in seven

out of fourteen cases, and the correct algorithm (if not the optimal aspect ratio) in ten of the

cases. The error in misidentifying the optimal algorithm was acceptable, especially for the

‘(scaling’’ examples, P > 8. The performance sensitivity of choosing the wrong algorithm (but

with an optimum aspect ratio) is not as extreme as when choosing the aspect ratio, but worst

case errors range as high as 85%. Note that when considering a larger sampling of interesting

problem sizes, all of the parallel algorithms are optimal in some cases. It is not possible to

eliminate any of the parallel algorithms (I priori.

6.4. Runtime predictions

When allocating resources, it is important to know how long a parallel job will take to run on a

given number of processors. For example, runtime information is often required when submit-

ting batch requests. This type of prediction requires a certain degree of absolute accuracy, but

the degree needed is not great. (However, accurate predictions of runtime can be extremely

important in real-time environments.)

Table 9 indicates how accurately the models predict the runtime for the model-determined

“optimal” parallel algorithms (to pick particular examples). The percentage error is measured

as in (5). With possibly one exception, the accuracy of these predictions is adequate for the

determination of resource requirements. Note that similar accuracies hold for predicted speedup

and parallel efficiency. The data indicate that model accuracy for problem size T42 is not scaling

well beyond 256 processors, at least for algorithm TH. However, the practical limit for T42 is

512 processors, and this degradation in accuracy is not significant for this application code.

- 25 -

TR 16x4
TH 16x8

Processors
8

16
32
64

128
256
512

T42
predicted
runtime

79.8
40.9
23.0
12.2
6.7
4.0
2.6

% error in II
prediction algorithm -A

DT 1x16
TR 16x2
TR 16x4
TT 16x8

-11.1 TT 16x16
-27.8 TT 16x32

T85
predicted
runtime

426.6
206.9
118.6
60.6
31.6
16.8
9.7

Table 9: Error in predicting runtime (seconds).

model
optimum
DT 1x8

DT 1x16
DT 2x16
DT 4x16
TT 16x8
TT 16x16
TR 16x32

T42
experimental

optimum
DR 1x8

DT 1x16
TR 8x4
T R 16x4
T R 16x8
TT 16x16
TH 16x32

% diff. in
runtime

6.6

17.3
22.3
2.7

45.1

-

-

model
optimum
DT 1x8
DT 1x16
DT 2x16
TT 16x4
TT 16x8

' TT 16x16
TT 16x32

% error in
prediction

-2.8
-8.4
0.7
4.3
4.5
1.8

-5.8

T85
experiment a1

optimum
DR 1x8
DR 1x16
TR 4x8
TR 8x8
TT 8x16
TT 16x16
TT 16x32

% diff. in
runtime

6.3
1.8
10.9
7.5
2.5
-
-

Table 10: Error in choosing optimal algorithm from complexity analysis instead of experimen-
tally.

6.5. Model accuracy requirements

The previous results indicate that the accuracy of our phase model approach is adequate for

algorithm tuning and comparison for this case study. We next discuss whether a simpler model

might also suffice.

There are numerous ways to simplify the current model. Here we consider only a few obvious

alternatives. First, we choose the optimal algorithm on the basis of arithmetic complexity alone,

ignoring copy phases, communication costs, and phasedependent rates. (Including copy and

communication complexity would require some sort of rate estimation to weight the different

components of the model.)

Table 10 indicates the true and predicted optimal parallel algorithms using this simplified

model, and the percentage loss from using the model-identified algorithm. These predictions

are not as good as those from using a phase model. Depending on the application, the size of

these errors may or may not be acceptable. But, since the error in the prediction is not known

in practice, the wide and unpredictable variation in the error is worrisome.

We can not predict runtimes from the complexity analysis alone. The next models we

- 26 -

% error in
prediction

-6.3
-21.1
-27.4
-23.0
-32.0
-56.1

consider use the sustained computation rate for an 8-processor run for a given parallel algorithm

to weight the corresponding arithmetic complexity model. Unlike for the phase models, a

separate rate was determined for each problem size. Table 11 indicates how accurately these

models predict the runtime for the above model-determined “optimal” parallel algorithms.

For this type of model to be accurate requires that either copy and communication costs are

negligible or they scale similarly with the computation costs, and that the rates are insensitive

to scaling. It is clear from Tab. 11 that these conditions do not hold for PSTSWM.

algorithm
DT 1x16
DT 2x16
TT 16x4
TT 16x8
TT 16x16
TT 16x32

Processors
16
32
64

128
256
512

predicted
runtime

205.3
103.3
50.6
25.7
13.1
6.9

algorithm
DT 1x16
DT 2x16
DT 4x16
TT 16x8
TT 16x16
TR 16x32

% error in
prediction

-9.1
-20.9
-18.6
-15.1
-20.8
-33.1

T42
predicted
runtime

41.2
20.8
10.6
5.5
3.0
1.6

Table 11: Error in predicting runtime (seconds) using compledy-based model.

Our final simplified model includes terms for computation, copy, and communication costs,

but does not take into account phase-specific rates. Instead we use average copy and compu-

tation rates determined from the 8-processor runs. As before, different rates are used for each

parallel algorithm and problem size. Table 12 indicates how accurately this type of single-phase

model predicts the runtime for the phase model “optimal” parallel algorithms (to allow direct

comparison with the phase model results). With the exception of predictions for T42 for large

numbers of processors, the single-phase model is as accurate a predictor of runtime as is the

(multiple-) phase model. So the question arises whether a phase model is required as long as

the copy, computation, and communication costs are included in the model.

Processors
8

16
32
64

128
256
512

algorithm
DR 1x8
DT 1x16
T R 8x4
TR 16x4
TH 16x8
TH 16x16
TH 16x32

T42
predicted
runtime

86.8
43.9
23.3
12.1
6.6
3.8
2.4

% error in
prediction

7.0
0.2
3.7
0.9
-7.2
-15.5
-32.4

algorithm
DT 1x8
DT 1x16
TR 16x2
TR 16x4
TT 16x8
TT 16x16
TT 16x32

T85
predicted
runtime

445.4
210.9
118.8
60.3
32.1
16.9
9.7

% error in
prediction

1.5
-6.6
-0.6
3.8
6.0
2.2
-5.8

Table 12: Error in predicting runtime (seconds) using single-phase model.

A phase model does not appear to be required for accurate performance prediction for

- 27 -

PSTSWM. However, we found the act of constructing the phase model to be necessary. The

error prone aspect of the phase model approach was in the generation of the phase model

expressions. These same expressions are needed in a single-phase model (or in a complexity

analysis). The additional step of calculating rates and validating the individual phase models

also validates the expressions. Modeling phases can also identify performance “problems”,

for example, code that is overly sensitive to aspect ratio due to compiler peculiarities. Using

average rates and a single-phase model removes the necessity of detailed profiling to determine

individual phase model rates, but makes it more difficult to validate the model.

7. Conclusions

This case study demonstrates that relatively simple algebraic models can be used to construct

scalable performance models for use in algorithm tuning and comparison. These models can

be difficult to generate and validate, but the phase model approach makes it feasible to do

so. In addition, constructing and modifying models and generating predictions were easy using

PerPreT. Note that our modeling “discipline”, used to limit the amount of work spent in

tuning the models, is somewhat artificial. Some restrictions are necessary for the study to

be- meaningful, but there may be better ways of determining phase model rates than simply

running the full application for the target problem size on a small number of processors.

A phase model approach was useful in generating a performance model, but it may not

be necessary when ”porting” the model to a new platform. As described earlier, single rates

for computation, copy, and communication phases may be sufficient when using the model for

predictions. In future work, we will examine this issue by repeating our evahation studies on

the IBM SP2 and on the Cray Research T3D or T3E. The SP2 will be a particularly interesting

platform; communication costs are relatively high, and a simple communication model may not

be adequate.

It is clear that additional tools would be useful in generating performance models. For

example, interactive tools to aid the application expert in generating the models from the

source code (as in [22]), in devising experiments to determine rates and to validate models, and

in calling PerPreT to make predictions would have made this process much simpler. We do

not currently forsee tools that can generate performance models for complete application codes

automatically, except possibly in high-level language-specific environments as proposed in [ti]

and [20].
This study did not address the question of how to generate the models before generating

code. While our algebraic models were sufficiently accurate, a detailed complexity analysis

is a requirement for an accurate comparison. Many of the costs, for example, copy phases

and rates, may not be obvious until the design and implementation are fairly advanced. One

- 28 -

possible approach is to generate a hierarchy of models, at each step eliminating obviously bad

parallel algorithms. The performance models of the remaining candidates would then be refined

(possibly simultaneously generating the code). This is a big job in itself, and a sophisticated

prototyping environment would be very useful. We hope that our results on the advantages

and limitations of algebraic performance models will be useful in the design of such tools.

8. Acknowledgements

This research was supported by the U.S. Department of Energy under Contract DEAC05-

960R22464 with Lockheed Martin Energy Research Inc. and by the Alexander von Humboldt

foundation. The Intel XP/S 150 MP Paragon operated by the Center for Computational

Science at ORNL is funded by the Department of Energy’s Mathematical, Information and

Computational Sciences Division of the Office of Computational and Technology Research.

9. References

[l] S. R. M. BARROS AND T. KAURANNE, On the pamllelization of global spectral weather

models, Parallel Computing, 20 (1994), pp. 1335-1356.

[2] J. BREHM, L. DOWDY, M. MADHUKAR, AND E. SMIRNI, PerPreT - a performance

prediction tool, in Quantitative Evaluation of Computing and Communication Systems,

Lecture Notes in Computer Science 977, Springer, Heidelberg, 1995.

[3] M. CALZAROSSA AND G. SERAZZI, Workload characterization - a survey, Proceedings of

the IEEE, 81 (1993), pp. 1136-1150.

[4] D. DENT, A modestly parallel model, in The Dawn of Massively Parallel Processing in

Meteorology, G.-R. Hoffman and D. K. Maretis, eds., Springer-Verlag, Berlin, 1990, pp. 21-

31.

[5] T. FAHRINGER, Estimating and optimizing performance for parallel programs, IEEE Com-

puter, 28 (1995), pp. 47-56.

[6] I. FOSTER, W. GROPP, AND R. STEVENS, The parallel scalability of the spectral transform

method, Mon. Wea. Rev., 120 (1992), pp. 835-850.

[7] I. T. FOSTER, B. TOONEN, AND P. H. WORLEY, Performance ofparallel computers

for spectml atmospheric models, Tech. Report ORNL/TM-12986, Oak Ridge National

Laboratory, Oak Ridge, TN, April 1995. (also, J , Atm. Oceanic Tech, accepted).

- 29 -

[SI I. T. FOSTER AND P. H. WORLEY, Parallelizing the spectml transform method: A com-

parison of alternative pamllel algorithms, in Parallel Processing for Scientific Computing,

R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, eds., Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1993, pp. 100-107.

[9] -, Parallel algorithms for the spectml tmnsform method, Tech. Report O’RNL/TM-

12507, Oak Ridge National Laboratory, Oak Ridge, TN, May 1994. (also, SIAM J. Sci.

Comput., accepted).

1103 U. GARTEL, W. JOPPICH, AND A. SCHULLER, Pamllelizing the ECMWF’s weather fore-

cast program: The ZD case, Parallel Computing, 19 (1993), pp. 1413-1426.

[11] G. A. GEIST, A. L. BEGUELIN, J . J . DONGARRA, W. JIANG, R. J . MANCHEK, AND

V. S. SUNDERAM, PVM: Parallel Virtual Machine - A Users Guade and Tutorial for

Network Parallel Computing, MIT Press, Boston, 1994.

[12] G. A. GEIST, M. T . HEATH, B. W. PEYTON, AND P. H. WORLEY, PICL: a portable

instrumented communication library, C reference manual, Tech. Report ORNL/TM-11130,

Oak Ridge National Laboratory, Oak Ridge, TN, July 1990.

[13] W. GROPP, E. LUSK, N. DOSS, AND T . SKJELLUM, A high-performance, portable tmple-

mentation of the MPI naessage-passing interface standard, Tech. Report ANL/MCS-P567-

0296, Argonne National Laboratory, February 1996.

[14] J . J . HACK AND R. JAKOB, Description of a global shallow water model based on the

spectml transform method, NCAR Tech Note NCAR/TN-343+STR, National Center for

Atmospheric Research, Boulder, CO, February 1992.

1151 P. HEIDELBERGER AND K. s. TRIVEDI, Analytic queuing models for pmgmms with inter-

nal concurrency, IEEE Trans. Comput., c-32 (1983), pp. 73-82.

[16] T. KAURANNE AND S. R. M. BARROS, Scalability estimates of parallel spectral atmo-

spheric models, in Parallel Supercomputing in Atmospheric Science: Proceedings of the

Fifth ECMWF Workshop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and

T. Kauranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 312-328.

1171 R. D. LOFT AND R. K. SATO, Implementation of the NCAR CCMZ on the Connection

Machine, in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth

ECMWF Workshop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and

T. Kauranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 371-

393.

- 30 -

[18] B. MACHENHAUER, The spectral method, in Numerical Methods Used in Atmospheric

Models, vol. I1 of GARP Pub. Ser. No. 17. JOC, World Meteorological Organization,

Geneva, Switzerland, 1979, ch. 3, pp. 121-275.

[19] MPI COMMITTEE, MPI: a message-passing interface standard, Internat. J. Supercomputer

Applications, 8 (1994), pp" 165-416.

[20] M. PARASHAR AND s. HARIRI, Compile-time performance prediction of HPF/Fortran

9OD, IEEE Parallel and Distributed Technology, 4 (1996), pp. 57-73.

[21] R. B . PELZ AND W. F. STERN, A balanced parallel algorithm for spectral global climate

models, in Parallel Processing for Scientific Computing, R. F. Sincovec, D. E. Keyes, M. R.

Leuze, L. R. Petzold, and D. A. Reed, eds., Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1993, pp. 126-128.

[22] S. R. SARUKKAI, P. MEHRA, AND R. J. BLOCK, Automated scalability analysis of

message-passing parallel programs, IEEE Parallel and Distributed Technology, 3 (1995) ,
pp. 21-32.

[23] E. SMIRNI AND ET. A L . , Thread placement on the intel paragon: Modeling and experi-

menation, in Proceedings of the 3rd International Workshop on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS 95), IEEE Com-

puter Society Press, Los Alamitos, CA, January 1995, pp. 226-231.

[24] A. THOMASIAN AND P. F. BAY, Analytic queuing network models for parallel processing

of task systems, IEEE Trans. Comput., c-35 (1986), pp. 1045-1054.

[25] H. WABNIG AND G. HARING, PAPS - the parallel program performance prediction toolset,

in 7th International Conference on Modeling Techniques and Tools for Computer Perfor-

mance Evaluation, 1994, pp. 284-304.

[26] D. W. WALKER, P. H. WORLEY, AND J. B. DRAKE, Pamllelizing the spectral transform

method. Part ZI, Concurrency: Practice and Experience, 4 (1992), pp. 509-531.

[27] D. L. WILLIAMSON, J , B. DRAKE, J . J . HACK, R. JAKOB, AND P. N. SWARZTRAUBER,

A standard test set for numerical approximations to the shallow water equations on the

sphere, J. Computational Physics, 102 (1992), pp. 211-224.

[28] P . H . WORLEY, Phase modeling of a pamllel scientific code, in Proceedings of the Scalable

High Performance Computing Conference SHPCC-92, J. Saltz and R. Voigt, eds., IEEE

Computer Society Press, Los Alamitos, CA, 1992, pp. 322-327.

- 31 -

1291 P. H. WORLEY AND J. B. DRAKE, ParalIeEizing the spectral transform method, Concur-

rency: Practice and Experience, 4 (1992), pp. 269-291.

[30] P. H . WORLEY AND M. T. HEATH, Performance characte~mts'on research at Oak

Ridge National Laboratory, in Parallel Processing for Scientific Computing, J. Dongarra,

P. Messina, D. C . Sorenson, and R. G. Voigt, eds., Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1990, pp. 431-436.

[31] P. H. WORLEY AND B. TOONEN, A users'guide to PSTSWM, Tech. Report ORNL/TM-

12779, Oak Ridge National Laboratory, Oak Ridge, TN, July 1995.

- 32 -

DR DH DT TR TH TT
r

Appendix

I N L L O N S I

I N L V E R J ’ I NVER

N L V E R J NVER

NLSPS I N C S P S

NLON

I

N C S P S N C S P S
T

N C S P S
1 I D R , D H , D T 1

M M + 1 where 9 = px

where c9 = w. - I&- MM 1 I
Table 13: Domain Decomposition Parameters

- 33 -

2
3
5
6
7

9
10
I 1

[(PX - l)/PX] . 3 2 . PLLATP . BLVER9. (a + b . ULL0H.P) (4.5,23.1)
[(PX- l)/PX] *32-ELLATP.BLVERE*(a.PX+ b.ELLOEE) (17.7,21.6)
20 . BLLATE + HLVERE . ELLOHE . (a + b. logz (PLLOHE/4)) (3.8,24.0)
64 . BLLATE BLVERE . (a + b . BLLOHE/I) (4.0,15.2)
144. lLLATE . ELVER3 - (a + b . ILLOPE/4) (10.4,19.8)

forward LT
(PY - 1)-6-ELVERS-BCSPS/PY 4.4
61 . llLVE3S . BLfinS . BLLATS
(14 . ITLLATS - I) . news . IILVERS

10.0
15.1

inverse LT
13 I 17.ECSPS - BLVEBS 7.0 I 12.8 14 (14. BCSPS 4 10 HLHHS) . BLLATS . BLVEBS

18
19
20
21
22

17 1 &I. BLLATE . BLVERE. (a’+ b 1 (BLLOES/2 - PLWS) I (22.1,36.8)
inverse FFT

70 . ELLATE. ELVER3 . (a + b . ELLOBE/4)
40 - ELLATE. ELVEBE . (a + b . EUOHE/2)
(25/2) -PLLATE. SLVERE . ELLOBS. (a + b . log2(ELLOBE/4))

[(PX - l)/PX] . 2 0 . ELLATE. HLLOBP. (a. Px + b . ELVEB9)

(8.8,20.4)
(2.8,18.6)
(3.8,24.0)

10.2
(15.2,18.6)

r(Px - i) /Px1.20. IBLLATE . PLVH~E - BLLOBS

1 I 12 - HLLOHP . IILLATS . BLVERP

2
3
5
6
7

8
9

forward FFT
[(Px - i) /Pxl . 3 2 . HLLATP . BLVERP . (a + b . ELLOP-P)
[(PX - l)/PXl .32 .ULLATP -ULVfiRE * (a. PX+ b * BLLOBE)
20. ELLATE. ELVER3 . ELLOEE. (a f b . log2 (ELLOEE/4))
64 - BLLATE . BLVERE . (a + b . BLLOll-F/4)
1 4 4 . ITLLATE . ELVERS. (a + b. IpLLOIIE/4)

[(PY - l)/PY] .32 . 3LLAT-F. BLVERE . ELLOIE
[(PY - l)/PY] . f54 - ELVERS * HLHHS . (a. PY + b . BLLATS)

forward LT

10 61 ELVERS . IIMHS * BLLATS
11 14 EUATS . ELVERS * PCSPS

l/b)
4.8

(4.5,23.1)
(17.7,21.6)
(3.8,24.0)
(4.0,15.2)
(10.4,19.8)

6.9
(12.2,20.6)
10.0
15.9

13 17 - ncsps .ELVERS
14
15
16
17

18
1 9
20
21
22

(14. BCSPS -1- i o . mLnns) I ELLATS . ELVERS
[(PY - 1)/PY1 .40. ELLATS . ILVERS . (a + b . H L H I S)
[(PY - 1)/PY1 . 40 . E L L A 1 3 - XLVERS * (a * PY + b * (HH + 1))
40 . ELLATE . IILV6Rf. (a + b. (ELLOHE/2 - HM - 1))

inverse FFT
70. PLLATS. ILyIiBE. (a + b . BLLOH-F/41
40. ELLATE. ELVERE . (a f b . SLLOBE/2)
(25/2). ELLATE. BLVEBE . BLLOEE . (a + b . log2(lILLOEE/4))
r p x - i)/pxI . 2 0 . UATE ELBERE - HLLOEE
[(PX - 1)JPXl .20. ELLATE * I U O B J ’ . (a - PX + b * BLVERS)

7.0
12.8
(6.5,21.9)
(7.4,21.6)
(22.1,X.S)

(8.8,20.4)
(2.8,18.6)
(3.8,24.0)
10.2
(15.2,18.6)

- 34 -

11 I (14. ELLATS - 1) . UCSPS . ELVERS

Phase I Model Rate

15.1

physical domain computation
1 I 12 . ELLOllP . BLLATP . llLVERP

2 [(PX - 1)/PX1 .64 . BLLATE . ELVERE . (a + b . IILLDEI)
4
5 20. ULLATI . ELVERE . B L L O I I . (a + b . logz (BLLOBE/4))
6 6 4 . BLLATI . ELVERE . (a + b. ELLDIII/4)
7 144. ELLATE. ELBERE. (a + b . 1 L L O E I / 4)

8 [(PY - 1)/PY1 . 6 4 . ELLATE. ULVERE . (a + b . ELHHS)
9 [(PY - l)/PY] . 6 4 - ELVERS. I L H H S . (a- PY + b . ELLATS)

10 61 ELVERS . ULHHS * ULLATS
11 14 . ELLATS . BLVERS . UCSPS

20. ELLATI ELVERS. BLLOBE . log2 (PX)

forward LT

1 4.8

(8.2,22.3)
7.5
(3.8,24.0)
(4.0,15.2)
(10.4,19.8)

(4.2,lO.O)
(12.2,20.6)
10.5
15.1

forward FFT
[(PX - l)/PX] .64 . E L L A T I . ILVERE . (a + b . ULLOEE)
20 . ELLATE * ELVERE . ULLOEE . log2 (PX)
20 . ELLATE. ELVERI . PLLOEE . (a + b . logz (ULLOBE/4))
64 . ULLATE . ELVERE . (a + b ULLOBE/4)

13 17. BCSPS . ULVERS
14
15

1 7

(14 * ECSPS + 10. ULIHS) * ULLATS . ELVERS
[(PY - l)/PY] . 40 . ELLATS . PLVERS . (a + b . I L H H S)

40. ULLATE . ELVERE . (a + b . (ELLOEE/2 - ELHHS))
16 [(PY- 1)/PY1 -4O*ELLATE.IL?lKS.(a-PY+ b - I L V E R S)

144 . I L L A T I . ELVERS .'(a + b . B L L O E i / 4)
forward LT

7.0
12.8
(6.5,21.9)

(22.1,36.8)
(8.0,21.0)

(PY - 1) .6. ELVERS . FCSPS/PY
1; I 61 . ELVERS 1 ELHHS . ELLATS

(8.2,22.3)
7.5
(3.8,24.0)
(4.0,15.2)
(10.4,19.8)

I E 1

12

13
14
17

18
19
20
21
23

13. E L S C S . ELVERS
inverse LT

17. ECSPS . ELVERS
(14. ICSPS + 10 . ULHHS) . ELLATS . ELVERS
40 . E L L A T I . ULVERI . (a + b . (ELLOIS/:! - PLI4nS)

inverse FFI'
70. BLLATE . ELVERE (a + b . ELLOEE/4)
40. E L L A T I . HLVERI . (a + b . I L L O E E / 2)
(25/2). BLLATI . ELVERE . IiLLOBI . (a + b . log2(ELLOP-F/4))
[(PX - 1)/PX1 .40 . I L L A T E . ELVERS. (a + b * ELLOBE)
(25/2) . ELLATE. ULVERE . I L L O B I . log2 (PX)

11.5

7.0
12.8
(22.1,36.8)

(8.8,20.4)
(2.8,18.6)
(3.8,24.0)
(6.0,19.5)
8.8

Table 16: Computational models and MFlop/s or MByte/s rates for algorithms DR and DH

18
19
20
21
23

70. ELLATS ' ULVERE . (a -t b. ELLOEE/4)
40. ELLATT. HLVERE . (a + b . BLLOEE/2)
(25/2). I L L A T E . I L V E R E - E L L 0 1 3 . (a + b . logz(HLLOEI/4))
[(Px - i)/px] .40. ELLATE. IPLVERI . (a + b . IILLOBE)
(25/2) . ULLATE . ILVERE . PLLOEE . log2 (PX)

(8.8,20.4)
(2.8,18.6)
(3.8,24.0)
(6.0,19.5)
8.8

Table 17: Computational models and MFlop/s or MByte/s rates for algorithm DT

- 35 -

!
% e m r

in model
-2.0
-1.8
-1.1
-2.6

4.7
-1.4
-3.2
-3.6
-6.3

I

-
-
-
3.4
-4.1
-4.5
-7.4
I

-2.0
-9.8

-15.9

83.46
64x1

16.24

T85
Runtime % errur
(seconds) in model

543.54 1.4
504.52 1.7
480.68 1.5
430.03 1.4
103.96 9.0
87.66 3.0
77.59 2.0
72.37 2.0
72.26 1.6
78.48 0.6
95.22 -5.7

53.43 7.2
45.63 1.1
41.72 -0.2
39.74 0.0
42.43 -1.0
54.02 -7.9

- -

-
-

28.88 1.6
25.10 -4.0
24.01 -7.4
24.91 -8.7
31.28 -15.7
-
-

128x1

16x8 9.73

2x64
256x1
128x2

8x16 11
4x32 - -

I

64x4
32x8

16x16
8x32
4x64

2x128
1x256

-
6.17
5.82
6.26 -
-
-

Aspect Ratio
PX x PY

8x1
4x2
2x4

Table 18: Runtime and model error for algorithm DH.

T42 T85
Runtime % error Runtime % error
(seconds) in model (seconds) in model

116.14 -1 9 542.89 1 6
103.71 -1.9 495.99 3.2
95.61 -1.4 468.99 3.5

1x8
64x1
32x2

81.13 -1.7 412.94 4.1 - - 103.99 9.0
21.22 1.4 86.86 3.8

-7.2 76.63 2.8
-10.3 72.55 0.8
-11.6
-12.3

1x64
128x1
64x2
32x4
16x8
8x16
4x32
2x64

256x1
128x2
64x4
32x8

16x16
8x32
4x64

2x128
1x256

84.04 0.4

- 52.67 8.5
11 93 -6.5 45.34 1.3
1145 -18.5 41.43 -1 4
10.83 -18.5 40.81 -4.0
11.71 -19.2 42.97 -4.5
- - 50.83 -5.7

- -
- - - -
-

- - - - - 29.60 -1.2
7.78 -21.8 26.67 -10.1
7.63 -28.2 25.81 -14.4
8.26 -29.2 26.51 -14.7 - 31.61 -16.5
- - - -

- 36 -

1x8
64x1
32x2

102.79 -1.8
86.50 -5.5

21.78 10.5
- -

90.12
78.83
72.20
69.09
97.36

151.52

54.41
44.50
39.43
36.66
50.55
81.43
143.77

-

-
_.

28.11
23.72
21.69
27.19
43.52
78.47
-

6.6
4.5
0.9

-4.9
-7.7
-8.5

13.8
7.9
3.9
-2.1
-4.9
-7.6
-8.4

-

10.3
1 .o

-5.9
-3.5
-7.3

-10.0

544.60
537.19
507.60 -0.6

16x4
8x8

4x16
2x32
1x64

128x1
64x2
32x4
16x8
8x16
4x32
2x64

1x128
256x1
128x2
64x4
32x8

16x16
8x32
4x64

2x 128
1x256

18.08 3.5
16.12 -0.2
14.67 -2.5
19.09 -4.8
28.26 -7.1
- -
- -

11.27 8.3
9.60 -0.3
8.69 -3.4
10.79 -4.4
16.28 -4.7
- -
-
-
-

6.31 0.5
5.40 -4.3
6.80 -7.4
9.56 -3.7
-
-

Table 20: Runtime and model error for algorithm DT.

!
% error

in model
-4.4
-3.5
-2.0
-2.8
0.6
-0.6
-1.7
-3.3
-3.1
-6.2

-0.8
0.2
-2.3
-5.4
-5.5
-9.85

-

-

-1.1
-2.8
-7.5
-11.4
-16.3

Aspect Ratio
PX x PY

8 x 1
4x2
2x4
1x8

64x1
32x2
16x4
8x8

4x16
2x32
1x64

128x1
64x2
32x4
16x8
8x16
4x32
2x64

256x1
128x2
64x4
32x8

16x16
8x32
4x64

2x128
1x256

--
T

Runtime
(seconds)

481.83
477.54
481.30
429.89
226.37
113.80
60.21
61.38
66.18
76.71
95.23
227.18
112.33
58.31
31.84
34.20
39.92
5 1.89

240.45
116.85
59.67
32.51
19.19
21.90
28.77
-
-

I 1
Runtime
(seconds)

92.08
90.84
90.67
83.61
44.07
22.98
12.46
12.80
13.81
16 75

46.91
23.43
12.55
7.12
7.42
8.97

-

-
I

I 25.83
13.44
7.54

~ 4.50
l 5.18
l -

-
-

>
% error

in model
-4.3
-3.5
-3.2
1.5

-0.9
1.2
1.2
1.5
0.6
-1.0
-5.7
-0.7
1.8
1.8
0.5
-1.1
-3.7
-7.3
-3.6
-0.6
-0.3
-3.2
-8.5

-10.4
-15.2

Table 21: Runtime and model error for algorithm TH.

- 37 -

1x8
64x1
32x2

Aspect Ratio Runtime
PX x PY (seconds)

8x1 I 92.10

80.98
44.07
22.29

-5.5

-0.2
-

128x1
64x2
32x4

8x16

70.23 4.3
83.85 0.7
227.18 -0.6

11.99
12.16
13.40
16.54

46.64
22.79
12.14
6.96
7.44
9.11

-

1x8
64x1
32x2

256x1

16x16
8x32 5.60
4x64

2x128
1x256

91.17 -2.4
44.05 -2.7
24.39 2.9

482.11

2x32
1x64

128x1

-2.1
-0.7 11 476.67

14.44 2.9
19.05 13.2
46.65 -1.0

-1.4 11 413.16 I 4.1
0.6 11 226.36 I -0.9

64x2
32x4
16x8
8x16
4x32

2.2 113.91 0.9
1.7 58.10 4.3
1.2

-0.9

24.80
12.92
7.15
7.09
8.06

2.8
0.5
-3.0
-4.1
-7.3
-

1.9
1.1

-2.8
-7.0

-12.4

112.51
56.64
29.79
31.23
36.27
46.81 -1.1
240.35 -3.5
116.63 -0.6
57.38 3.0
29.78 4.7
16.95
19.75 -1.1
25.73 -5.4

Table 22: Runtime and model error for algorithm TR.

102.03 -2.8
-1.4

% jl
4x16 12.74

2.5
6.2
8.0

2x64
1x128
256x1 I1
128x2
64x4
32x8

16x16
8x32
4x64

2x128
1x256

11.25 -
-

27.38
13.88
7.57
4.33
5.00
6.91 -
-

5.5
4.8
1.4
4.7
1.3
11.0 -

6.1
7.0
2.0
1.3
-2.9
4.9

1
Runtime
(seconds)

482.12
528.42
523.20
453.04
228.49
126.44
62.14
60.08
60.17
62.82
65.26
229.02
124.70
59.93
30.28
29.54
30.34
34.22
53.47
242.19
130.04
61.80
30.61
16.53
16.83
18.93
28.59 -

I

% error
in model

-8.6
-5.3
-3.6
1.5

-10.8
-6.5
-1.0
5.8
8.2
5.9
-1.0
-10.4
-4.9
0.8
4.5
11.2
12.3
6.7
17.2

-12.7
-5.8
-0.7
3.3
1.6
5.5
3.3
21.0

Table 23: Runtime and model error for algorithm TT.

- 39 -

ORNL/TM-13254

INTERNAL DISTRIBUTION

1. E. F. D’Azevedo
2. T. S. Darland
3. J. J. Dongarra
4. T. H. Dunigan
5. G. A. Geist
6. K. L. Kliewer

7-11. M. R. Leuze
12. C. E. Oliver

13-17. S. A. Raby

18-22. R. F. Sincovec
23. P. H. Worley
24. Central Research Library
25. ORNL Patent Office
26. K-25 Applied Technology Li-

27. Y-12 Technical Library
28. Laboratory Records - RC

brary

29-30. Laboratory Records Department

EXTERNAL DISTRIBUTION

31. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

32. Jiirgen Brehm, University of Hannover, Institut fur Rechnerstrukturen und Be-
triebssysteme, Lange Laube 3, 30 159 Hannover, Germany

33. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
29 Oxford Street, Harvard University, Cambridge, MA 02138

34. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,
NC 27709-221 1

35. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

36. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
132444100

37. Dennis B. Gannon, Computer Science Department , Indiana University, Blooming-
ton, IN 47401

38. Alan George, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

39. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

40. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, IA 50011-3020

41. Michael T. Heath, Department of Computer Science, 4157 Beckman Institute 405
North Mathews, Urbana, IL 61801

42. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

- 40 -

43. Dan Hitchcock, ER-31, Mathematical, Information, and Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy Re-
search, U.S. Department of Energy, Washington, DC 20585

44. Charles J. Holland, Air Force Office of Scientific Research, 110 Duncan Avenue,
Suite B115, Bolling Air Force Base, Washington, DC 20332-0001

45. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

46. Tom Kitchens, ER-31, Mathematical, Information, and Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy Re-
search, Washington, DC 20585

47. Richard Lau, Office of Naval Research, Code l l lMA 800 Quincy Street, Boston
Tower I, Arlington, VA 22217-5000

48. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

49. Manish Madhukar, Computer Science Department, Vanderbilt University, Box
1679, Station B, Nashville, T N 37235

50. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

51. David B. Nelson, Associate Director, Office of Computational and Technology
Research, ER-30, Office of Energy Research, US . Department of Energy, Wash-
ington, DC 20585

52. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

53. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

54. Merrell Patrick, Computer and Information Science and Engineering (CISE), Na-
tional Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230

55. James C. T. Pool, Deputy Director, Caltech Concurrent Supercomputing Facility,
California Institute of Technology, MS 158-79, Pasadena, CA 91125

56. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

57. Ahmed H. Sameh, Department of Computer Science, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455

58. Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

59. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

60. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

- 41 -

61. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N
37831-8600

62-63. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

